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KW-SIFT descriptor for remote-sensing image registration
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A technique to construct an affine invariant descriptor for remote-sensing image registration based on the
scale invariant features transform (SIFT) in a kernel space is proposed. Affine invariant SIFT descriptor is
first developed in an elliptical region determined by the Hessian matrix of the feature points. Thereafter,
the descriptor is mapped to a feature space induced by a kernel, and a new descriptor is constructed by
whitening the mapped descriptor in the feature space, with the transform called KW-SIFT. In a final
step, the new descriptor is used to register remote-sensing images. Experimental results for remote-sensing
image registration indicate that the proposed method improves the registration performance as compared
with other related methods.
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As a fundamental task in image processing, image reg-
istration is a process wherein two or more images of
the same scene, taken at different times, from differ-
ent viewpoints, or by different sensors are overlaid[1].
The existing image registration methods are, in gen-
eral, divided into two broad categories: area-based and
feature-based methods[2]. The feature-based methods do
not work directly with image-intensity values but, in-
stead, use salient features extracted from two images;
this has been shown to be more suitable for situations
when intensity changes and complicated geometric de-
formations are expected. Therefore, these feature-based
methods have been used widely in remote-sensing image
registration[3−5].

A feature-based application, syntactic descriptors for
interest regions are successfully used in image registration
because of their efficiency and robustness in geometrical
and photometric transformations. Recent research work
has focused on the development of descriptors invari-
ant to image transformations because more distinctive
and invariant descriptors would improve the performance
of the feature-correspondence procedure[6,7]. Lowe de-
veloped a scale invariant features transform (SIFT) de-
scriptor based on the gradient distribution in the de-
tected regions; this descriptor is invariant to image scal-
ing and rotation, and partially invariant to change in
illumination[7]. As an extension of the SIFT method, Ke
et al. presented a principal component analysis (PCA)
SIFT descriptor for fast matching on the basis of the PCA
technique[8], but this is less distinctive than the SIFT
descriptor proved by Mikolajczyk et al.

[9] More recently,
Bay et al. proposed a novel scale-and-rotation invariant
detector and descriptor, called the speeded up robust fea-
tures (SURF), which was fast in matching and sufficiently
distinctive[10]. To take advantage of the higher order sta-
tistical characteristics of image, Duan et al. applied an
independent component analysis (ICA) on the gradient
image around the detected interest point to develop ICA-
SIFT descriptors[11], which are distinctive and have high
matching speed. He et al. applied a new principle based
on the system similarity theory to match SIFT descrip-
tors and to obtain higher matching precision[12]. How-
ever, the performance of these algorithms drops rapidly

as differences of input images grow in remote-sensing im-
age registration. There are two reasons for that. Firstly,
these descriptors are not invariant to affine transforma-
tion, which can induce the described regions to have cer-
tain different structures. Secondly, certain nonlinear cor-
relations between descriptors from the same image are
not considered, and this can affect the accuracy of match-
ing.

In the original SIFT algorithm, the dominant gradi-
ent orientation is computed in a small circular neigh-
borhood around the point. The size of the circular
neighborhood is determined by the point’s scale, but
its shape is not invariant to affine transformation. Lin-
deberg et al. used the second moment matrix to esti-
mate the elliptical region around the point, and proved
that this fixed point would be preserved under affine
transformations[13]. However, the algorithm is very com-
plicated, whereas the Hessian matrix requires signifi-
cantly less computational effort to solve than the sec-
ond moment matrix; this is because the Hessian matrix
only requires one scale parameter and is closely related
to the determinant of the Hessian and the Laplacian
functions[14]. In this letter, the Hessian matrix H is used
to estimate the elliptical region around the point, which
can be defined as

H =

[

Dxx Dxy

Dxy Dyy

]

, (1)

where D is the difference-of-Gaussian function:

D(x, y, σ) = G(x, y, kσ)∗I(x, y)−G(x, y, σ)∗I(x, y), (2)

and G(x, y, σ) is the Gaussian function: G(x, y, σ) =

e−(x2+y2)/2σ2/

2πσ2.
Theorem 1 Assume that there is a linear transfor-

mation Y = AX between images I1 and I2; then, the
elliptical region determined by the eigenvalues of the Hes-
sian matrix for the corresponding feature points will be
relatively invariant under affine transformations.

Proof Let H1 and H2 denote the Hessian matrix of
the corresponding feature points, respectively. Similar to
Ref. [13], H1 = ATH2A can be obtained. Let us assume
that the eigenvalues of H1,H2, and A are α1, α2, β1, β2,
and λ1, λ2, respectively. Then, the following equation
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can be obtained:

α1α2 = det(H1) = det(ATH2A) = det(AATH2)

= det(ATA) · det(H2) = λ2
1λ

2
2β1β2. (3)

Therefore, the area of the elliptical affine regions deter-
mined by the eigenvalues of the two Hessian matrices can
be computed as

S1 = πα1α2, S2 = πβ1β2, S1/S2 = λ2
1λ

2
2. (4)

The ratio of the area of two elliptical affine regions is
a constant that is related to the eigenvalues of the linear
transformation matrix, which validates the result.

The eigenvalues of the Hessian matrix H represent two
principal signal changes in a neighborhood of the point,
and the elliptical region determined by the eigenvalues is
relatively invariant under affine transformation accord-
ing to Theorem 1. Therefore, these eigenvalues are used
to measure the elliptical affine shape of the point neigh-
borhood in our algorithm. To take advantage of the his-
togram that is used to determine the main orientation
of feature points, the elliptical region is normalized to a
circle by using the ellipse parameters from the Hessian
matrix of the point. The position of each sample point
that falls within the elliptical region can be mapped to its
normalized position, within the circle, by the equation:
X̄ = H−1/2X .

Then, to construct a more robust descriptor, the Pre-
witt operator is used to compute the gradient magnitude
m(x, y) and gradient orientation θ(x, y) to avoid the use
of the pixel differences directly, which can be computed as

Px =

[ −1 0 1
−1 0 1
−1 0 1

]

, Py =

[ −1 −1 −1
0 0 0
1 1 1

]

, (5)

dx(x, y) = Px ∗ L(x, y), dy(x, y) = Py ∗ L(x, y), (6)

where L(x, y, δ) is produced from the convolution of a
variable-scale Gaussian G(x, y, δ) with an input image
I(x, y): L(x, y, δ) = G(x, y, δ) ∗ I(x, y).

m(x, y) =
√

(dx(x, y))2 + (dy(x, y))2, (7)

θ(x, y) = arctan(dy(x, y)/dx(x, y)). (8)

After this, the remaining computations are similar to
that in the SIFT. To reduce the computational complex-
ity, the 4×4 descriptor with four orientations for a feature
point is used.

However, certain nonlinear relationship may exist be-
tween the descriptors that form the same input image
when the gray values or the geometrical structures of the
areas around the two feature points are very similar; this
results in a mismatch. The question then arises of how to
eliminate the nonlinear relationship between the descrip-
tors. The whitening PCA in the kernel space provides
the answer. In our algorithm, the KW-SIFT descriptors
can be obtained by using whitening of the φ-mapped de-
scriptors in the feature space. Therefore, the KW-SIFT
descriptors not only remove the correlations of the origi-
nal descriptors but also reduce their dimensions.

Theorem 2 Let K be a kernel matrix with feature
map φ and feature space F . For a given set of data

X={x1, x2,· · ·,xn}T∈R
d, the transpose of the data after

whitening in the feature space is provided by the eigen-
vectors of the corresponding centered kernel matrix K̄.

Proof Let Xφ = {φ(x1), φ(x2), · · · , φ(xn)}T denote
the images of X in the feature space and K = XφXT

φ de-
note the corresponding kernel matrix with entries Kij =
k(xi, xj) = 〈φ(xi), φ(xj)〉. The data Xφ with its mean
µφ can be shifted to obtain the centered dataX̄φ =
{φ̄(x1), φ̄(x2), · · · , φ̄(xn)} as

φ̄(xi) = φ(xi) − µφ, µφ =
1

n

n
∑

i=1

φ(xi). (9)

Then, the covariance of X̄φ and the corresponding kernel
matrix can be expressed as

C =
1

n

n
∑

i=1

φ̄(xi)φ̄(xi)
T =

1

n
X̄T

φ X̄φ, K̄ = X̄φX̄T
φ .

(10)
The eigen-decomposition of nC and K̄ are given by

nC = UΛCUT, K̄ = V ΛKV T, (11)

where the columns ui of the orthonormal matrix Uare
the eigenvectors of nC, and the columns vi of the or-
thonormal matrix V are the eigenvectors of K̄. Then,
considering an eigenvector-eigenvalue pair v, λ of K̄,

nCX̄T
φ v = X̄T

φ X̄φX̄T
φ v = X̄T

φ K̄v = λX̄T
φ v, (12)

implying that X̄T
φ v, λ/n is an eigenvector-eigenvalue pair

for C. Further, the norm of X̄T
φ v is given by ‖ X̄T

φ v ‖2=

vTX̄φX̄T
φ v = vTK̄v = λvTv = λ.

Therefore, the normalized eigenvector of C is u =
λ−1/2X̄T

φ v. The k positive dominant eigenvalues of C are

denoted by λ1/n > · · ·> λk/n > 0 and the correspond-
ing normalized eigenvectors by ui = λ−1/2X̄T

φ vi, i =

1, · · · , k. Let D = diag(λ1/n, · · · , λk/n) and E =
(u1, · · · , uk), then the whitening matrix can be calcu-
lated via

B = D−1/2ET

= {(λ1/n)−1/2λ
−1/2
1 vT

1 X̄φ, · · · , (λk/n)−1/2λ
−1/2
k vT

k X̄φ}T

= n1/2{λ−1
1

n
∑

i=1

vi
1φ̄(xi), · · · , λ−1

k

n
∑

i=1

vi
kφ̄(xi)}T. (13)

Therefore, the jth column of the whitened matrix ZT is

ZT
j = BX̄j

φ = n1/2{λ−1
1

n
∑

i=1

vi
1φ̄

T(xi)φ̄(xj),

· · · , λ−1
k

n
∑

i=1

vi
kφ̄T(xi)φ̄(xj)}T

= n1/2{λ−1
1

n
∑

i=1

vi
1k̄(xi, xj), · · · , λ−1

k

n
∑

i=1

vi
kk̄(xi, xj)}T

= n1/2{vj
1, · · · , vj

k}T, j = 1, 2, · · · , n, (14)

where
k̄(x, z) = k(x, z) − 1

n

n
∑

i=1

k(x, xi)

− 1

n

n
∑

i=1

k(z, xi) +
1

n2

n
∑

i,j=1

k(xi, xj). (15)
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Then, Z can be depicted as Z = n1/2{v1, · · · , vk}, where
v1, · · · , vk are the corresponding eigenvectors of the first
k positive dominant eigenvalues of K̄.

The construction of the KW-SIFT descriptors can be
divided into two steps. Firstly, the affine invariant de-
scriptors are mapped to a feature space via certain non-
linear mapping φ; then, the kernel matrix K can be cal-
culated. Secondly, the centered kernel matrix K̄ is cal-
culated and its first k eigenvectors can be found, which
are the KW-SIFT descriptors in accordance with Theo-
rem 2. In our algorithm, the Gaussian kernel of the form
k(x, y) = exp(− ‖ x − y ‖2

/

2σ2) is employed.
The proposed algorithm for remote-sensing image reg-

istration by using the KW-SIFT descriptor can be ex-
pressed as follows.

1) Construct the affine invariant descriptors X =
{x1, x2, · · · , xn}T for the extracted feature points from
the input images I1 and I2.

2) Map those descriptors to a feature space and cal-
culate the corresponding KW-SIFT descriptors Z =
n1/2{v1, v2, · · · , vk}.

3) The Euclidian distance between new descriptors,
which consist of kernel principal components of original
ones, is employed to determine the corresponding feature-
point pairs.

4) Compute the transformation parameters between
the input images I1 and I2 according to the correspond-
ing feature-point pairs, which are used to complete the
image registration.

In the proposed algorithm described above, the dimen-
sion of the affine invariant descriptor is n = 64. In the
experiments, the dimension of the KW-SIFT descriptor
is taken as k = 32 and the ratio of scales between the two
feature points is used as the value of parameter σ in the
Gaussian kernel matrix. The transformation between the
input images is assumed to be an affine transformation,
which can be defined as

[

X
Y

]

=

[

a b
d e

] [

x
y

]

+

[

c
f

]

, (16)

where (x, y) is the point of the reference image, (X, Y ) is
the point of the sensed image, and a, b, c, d, e, f are the
transformation parameters.

To verify the validity of the proposed algorithm, the ex-
perimental results are divided into two parts. In the first
part, the algorithm is applied to register two synthetic
aperture radar (SAR) images (Fig. 1) whose transforma-
tion parameters are known to evaluate the accuracy of
the registration approach. In the second part, the pro-
posed algorithm is used to register three different pairs of
remote-sensing images (Fig. 2) and compare it with other
related methods. The root mean-square error (RMSE)
between the matched feature points is used for evaluat-
ing the registration results, which is defined as

RMSE=

√

√

√

√

m
∑

i=1

[(axi+byi+c−Xi)2+(dxi+eyi+f−Yi)2]
/

m,

(17)
where m represents the total number of matched feature-
point pairs. In this study, the correspondence of feature
points was obtained by comparing the distance of the
closest neighbor descriptor to that of the next closest

Fig. 1. Registration of SAR images from some region of Yun-
nan in China. (a) Reference image; (b) sensed image; (c)
matching results; (d) registration results.

Fig. 2. Three pairs of remote-sensing images with large vari-
ations. (a), (c), and (e) are the reference images. (b), (d) and
(f) are the corresponding sensed images.

Fig. 3. Comparison of matching accuracy of Figs. 1(a) and
(b) by five related methods when the ratio of distance changes
from 0.5 to 0.9.

descriptor. To develop a compromise between the num-
ber of correct matched points and the correct match rate,
the threshold was set to 0.6. The threshold r = 0.6 is con-
sidered and the two feature points are treated as matched
pairs if the ratio of distance is less than the threshold.
A pair of feature points is considered to be the correct
matched points if their matching error is less than 0.5. In
the experiments, 20 matched pairs were used to calculate
the RMSE for different methods.

In order to demonstrate that the proposed algorithm is
robust with regard to large geometric variations, experi-
ments have been carried out on two SAR images in com-
paring the proposed algorithm (KW-SIFT) with SIFT[7],
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PCA-SIFT[8], SURF[10], and ICA-SIFT[11]. The two
SAR images (Figs. 1(a) and (b)) with large geometric
variations are obtained from some regions of the Yunnan
Province in China, and they have been used to test the
accuracy of the proposed algorithm. Figures 1(a) and (b)
are used as the reference and the sensed images, respec-
tively. Figure 1(b) represents the affine transformed ver-
sion of Fig. 1(a), where the transformation parameters
are known. The matching results and the registration re-
sults obtained by using this new algorithm are shown in
Figs. 1(c) and (d), respectively. From the results, it can
be seen that the two images have a large affine transfor-
mation. The comparison of matching accuracy for dif-
ferent methods when the ratio of distances changes from
0.5 to 0.9 is shown in Fig. 3. Here, the matching accu-
racy is defined as the ratio between the number of cor-
rect matches and the total number of matches detected.
The results indicate that the matching accuracy of our
methods is higher than 90% and decreases more slowly
with the increase in ratio of distances, in comparison with
other related methods. The actual transformation pa-
rameters and those obtained by the related methods are
shown in Table 1. From Table 1, it is clear that differ-
ences between the actual transformation parameters and
that of the proposed algorithm are the least. Accord-
ing to the actual transformation parameters, the RMSEs
of the registration results by different methods are also
given in Table 1. Clearly, the image registration by using
the proposed algorithm results in a lower RMSE, and its
accuracy, therefore, is better than that of the other four
related methods.

To test the registration ability of the proposed algo-
rithm, three remote-sensing image pairs with different
changes were used. The first pair consists of images from
the same sensor (Landsat TM) but acquired from dif-
ferent bands, as shown in Figs. 2(a) (Band 3) and (b)
(Band 5), which have large intensity variations. The im-
ages of the second and the third pairs from different sen-
sors acquired at different times (Figs. 2(c)–(f)), in which
changes can be seen to occur between Figs. 2(c) and
(d), and Figs. 2(e) and (f), have scaling and rotational
variations. Figures 2(c) and (e) are spot (Band 3) im-
ages obtained on Aug. 8, 1995, whereas Figs. 2(d) and
(f) are Landsat TM (Band 4) images obtained on Jun.
7, 1994. The registration results obtained by using the
proposed algorithm for the three image pairs are shown
in Figs. 4(a)–(c). Comparisons of matching accuracy for
the three image pairs when the ratio of distances changes
from 0.5 to 0.9 are shown in Figs. 5(a)–(c). From Fig. 5,
it can be seen that the matching accuracies for the three
image pairs by using the proposed algorithm are higher
than 75% and decrease more slowly than the other four

related methods with changes in the ratio of distances.
Although the proposed algorithm provides slightly bet-
ter results than those obtained with the other four re-
lated methods when structures of the image pairs are
not very complex (Fig. 5(a)), it has obvious advantages
in comparison with the others when the complexity of
structures increases (Figs. 5(b) and (c)); this indicates
that the proposed algorithm is more robust than other re-
lated methods when image pairs have complex structures

Fig. 4. Registration results for the three image pairs in Fig.
2 by using the proposed algorithm. (a) Registration results
for Figs. 2(a) and (b); (b) registration results for Figs. 2(c)
and (d); (c) registration results for Figs. 2(e) and (f).

Fig. 5. Comparison of matching accuracy for the three image
pairs in Fig. 2 by five related methods when the ratio changed
from 0.5 to 0.9. (a) Matching accuracy of Figs. 2(a) and (b);
(b) matching accuracy of Figs. 2(c) and (d); (c) matching ac-
curacy of Figs. 2(e) and (f).

and large variations. The RMSEs of the registration re-
sults for three image pairs by using different methods are
shown in Table 2, indicating that the proposed algorithm
outperforms the other four related methods.

The performance of the proposed algorithm is analyzed
in terms of the complexity and the application scope for
affine transformation. Estimating the complexity of the
proposed algorithm mainly boils down to calculation of

Table 1. Comparison of Registration Results Obtained by Different Methods

Methods a b c d e f RMSE

Actual 0.8300 0.5000 –348.7500 –0.7200 1.0000 283.9700 0.0000

SIFT 0.8219 0.4804 –350.3315 –0.7177 0.9892 284.6600 0.8879

PCA-SIFT 0.8315 0.5152 –349.8800 –0.7305 1.0332 283.8256 0.7126

SURF 0.8308 0.4905 –348.0228 –0.7348 1.0556 283.7306 0.2879

ICA-SIFT 0.8278 0.4822 –349.2537 –0.7116 0.9961 285.5532 0.2836

KW-SIFT 0.8293 0.4998 –348.7252 –0.7201 1.0001 283.9600 0.0512
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Table 2. RMSEs of Registration Results Using the
Five Different Methods for Fig. 2

Method SIFT PCA-SIFT SURF ICA-SIFT KW-SIFT

1st Pair 0.8562 0.7973 0.5774 0.4523 0.2526

2nd Pair 1.2538 1.2506 0.8611 0.6461 0.4833

3rd Pair 1.2675 1.2466 0.9539 0.7877 0.4957

Table 3. Run Time and Number of Correct
Matching Pairs Using Different Methods for Fig. 2

Method SIFT PCA ICA SURF KW

-SIFT -SIFT -SIFT

Run Time
1st Pair 5.2 4.3 5.6 5.0 5.5

(s)
2nd Pair 3.1 2.8 3.5 2.9 3.0

3rd Pair 6.5 5.7 6.2 6.1 6.3

Number of 1st Pair 51 55 60 57 72

Correct 2nd Pair 6 10 15 18 20

Match Pairs 3rd Pair 22 21 31 32 38

the KW-SIFT descriptors and matching of the descrip-
tors. Let us assume that the sizes of the two input
images are M and N (M 6N), and the numbers of fea-
ture points extracted from the two images are m and n
(m 6 n), respectively. Then, the complexities involved
in the calculation of the affine invariant SIFT and the
KW-SIFT descriptors are O(N2) and O(n3), respec-
tively, and that of matching the descriptors is O(mn).
Indeed, the complexity of the proposed method is pro-
portional to the input image area and the number of
extracted feature points. Table 3 presents a comparison
of the computation time required by the different meth-
ods. Here, each method is applied to the three pairs of
remote-sensing images (Fig. 2). The experiments were
performed on a standard computer (Pentium E5400, run-
ning at 2.70 GHz). The proposed algorithm obtains the
most correct matches although its registration speed is
slightly lower than those for other methods; therefore,
it achieves a compromise between speed and quality of
image registration. To test the conditions where the pro-
posed algorithm can be applied, it was applied for the
registration of Fig. 1(a) and the different affine transform
versions of that particular image. The results indicate
that the proposed algorithm can register the two images
whose scales (s =

√
a2 + b2) change within 3.5 times,

whereas the SIFT can only deal with scale variation of
less than 2 times. The rotation (θ = arccos(a/s)) and
translation (e, f) parameters have little effect on the re-

sults.
In conclusion, we present a technique to construct an

affine invariant descriptor for remote-sensing image regis-
tration based on the SIFT in kernel space, namely, KW-
SIFT. An affine invariant SIFT descriptor is developed
based on the SIFT descriptor. The new descriptor KW-
SIFT descriptor is constructed by whitening the mapped
descriptor in the kernel space. According to Theorem 2,
the descriptors are the components of the eigenvectors
of the kernel matrix, which remove the correlation of
the original descriptors and improve the accuracy of the
registration results. The experimental results on remote-
sensing image pairs with different variations indicate
that the proposed method returns better performance as
compared with SIFT, PCA-SIFT, SURF, and ICA-SIFT
methods with regard to matching accuracy and RMSE
of the registration results.

This work was supported by the National Natural Sci-
ence Foundation of China (Nos. 60972150 and 10926197).
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